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Summary: The kinetlc equations for rotons and phonons are solved by
ueingkeffeotiva differential croes- aeotiona Soni$ha scattering
of elementary excitations (phonone and rotons)LPy each other )ue

_}\_pooaitx)coeffioient Lﬁelium IIﬂ%?*ﬁompoaed of two parta t one
daused by scattering of rotons ("roton vigeosity") and not do-
‘ pendent on temperature; the other, cause¢d by scattering of

g ; phonons (“phonon viscosity") and sharply increasing with fall in

temperature, The experimental velues for the (viscosity ocoef-

ohk
, . ficient/@n helium II appear to be in good agreement with theory.

5. The kinetic equation

The expressions obtained in the first part of this work for

o PR TPETITY

the probability of scattering of various types of excitations by

.g)u' *o
each other permi Ainvestigatian = the temperature dependence of

the vigeosity coefficient of helium II. The kinetic equation for

elementary excitations which we have to solve may be wriltten in
the form !

%35 + vvr =) (5:1)

whsre n = n(r,v,t) is the distribution function, v the velocity,

end u(n) the collisiun integrel, the exact form of which is de=-
l ‘ ) duced below for each type of interaction,

i e 5
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‘We will assume that in a fluid there is a macroscopic flow

of velocity u, varying with the coordinate in such & way that
the velooity gradient 'isé so small that equilibrium is almost
@steblighed in each volume element éorréaponding to a given
value of the velooity: 1.es, in each volume element the dis-~
tribution funotions for rotons and phonons are almost equal to
their equilibrium valugs. Thus the diptribution funetion n for
rotons (or phonons) mey be represented os the sum of the eguili-
brium funotion n, and'a smull viriation dn:
n=n,+ on (5¢2)

Since we are secking £ stotionary solution of the kinetio
equation appropriate to a ziven mocroscopic flow (oonstant in
timo), the left-hond term dn/ dt in the kinetic equation should
be taken as equil to zero. Farthermore, we need only substitute
the equilibrium function ng (instead of n) in the approximation
term vVn in question, since this term already contains a very
small quantity ~ the velceity grﬁdiént of macroscopic flow.

In a fluid moving wish velocity u, the equilibrium roton die-

tribution function &ppedrs as i

. s _P-B) 4 Pu? (5:3)
n exrg—(-fr 3 -3 + KT>

Let us choose the iirection of the z axis along the veloclty
vector u and for the sace of simplicity let us assume that the
velqpi@r—gfﬁﬁféﬁf is ﬁ;rucﬁqdﬁa;qngiég uxiéﬁx perpendicular to the
z-oxis. It is evidens that the»va&ﬁ; ‘ot the viecoeity coefficient
required la independent of the choice of coordinate system. In

salouloting the first viscosity coefficient we need only consider

Declassified in Part - Sanitized Copy Approved for Release 2012/06/01 : CIA-RDP82-00039R000100030027-9




Declassified in Part - Sanitized Copy Approved for Release 2012/06/01 : CIA-RDP82-00039R000100030027-9

r. - ~

3 ;
. |
the oape Whore the velooity u eatisfies the condition div u = 0. } {
Let ue now apsume that the density and temperature are oonstant
throughout the liquid. As a result, on the left-hand side of the

kinotic equation we have ! ' ' }

‘ vVn : V,?s'.';‘ = N, Pf.__-:_;_ %!;

If wo usc & apperical systom of coordinates with tho polar
axls lylng in the z dircction, the expression obtnined may be re-

written in the form

v L W Call
’\a )_Poﬁ .SAX- (249 e. S‘A‘a ¢ (5!“)
1 | in which it is legitimate to write Po instead of P since rotons

J possese momenta of magnitude close to Po' In accordance with
(1.2) the velocity v ig' given by :
) -
V= _)_t— = P "'?o
P P

The final kinetic equation for rotons becomes!

, o P___MPK'?’ Qo A Sen @h = Th) (5.6) .
i MmRT ;

The kinetic equation for phonons may be written in an ane-

(545)

logous form. In this case, however, allowance must be made for
the fact that phonons obey Bose statistics, end therefore their |

gquilibrium function for a flowing gas is

" [uﬁ(i’;ﬁg‘) ) 'T CON

Carrying out similar caloulations to those given above for
rotons, but with the diseiﬁation funetion of (5.7), we obtain the

i K kinetic équation for phonone

i ' g b . * e
ACEDE - cy® L6 4B = T() (5.8)
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The collision integrals on the right side of the equations (5.6)

and (5.8) are dependent on the nature of the interacticns of
rotons with each other and with phonons in the ocase of equation
(5.6),and on the nature of the interactions of phonons with each
other nnd with rotone in the case of equation (5:8).

The ¥etud o +he viacositytgoeffieieni\evidently does not de-
pend on the part of the liquid conoidered. It im convenient to
sclect o point at which the velocity of macroscopic motion is zero.
At this point the expressions for the scattering function (5.3)
and (5.7) are not dependent on velocity, und coincide with the
corresponding equilibrium functions in o motionless liquid.

Due to the presence of two typos of excitations in helium II
we have written two kinetic equations. That portion of viscosity
caused by momentum trensfer by rotons will be conditionally re-
ferred to ae roton viscosity; and that part due to transfer of
momentum by phonons as phonon viscosity. Actumlly gne viscogity
ig obgerved, this being equal to the sum of the roton and phonon

contributions.

6; Roton v;gggﬁlﬁx.
their scattering ond absorption

(See Pere,l4) ere disregarded, the change in the number of rotons
in a given phase volume will take place in two ways, namely:
() elastic scattering of rotone b& rotons (Para.ly); (b) scatter-
ing of rotons b& phonons (Para;g).

However, simple caloulations show that down to temperatures
of the order of O.6-0.7°K the contribution to the viscosity of
the scattering of rotonsg by phonons will be negligible oompared
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g to the elastic scattering of rotons by rotons. This is not only

because the number of phonons at higher temperatures is found to

be less than the number of rotons, but meinly because the roton

momente are changed very little during the scattering of rotons

by phonone; accordingly the momentum flux, which determines the

e

the
magnitude of/viscooity, is found to be negligidble. Since at

temperatures below 1°K the roton viscosity hecomes negligibly

small in comparison with the phonon viscosity, we conclude that
it is sufficiont to take account only of roton-roton scattering
in the kinetic equation.

The roton kinetic equation (5.6) obtained above ocannot be
solved accurately. However, if we do not attempt an exact calcu-
lation of the roton portion of the viscosity, but limit ourselves
to a determination of its temperature dependence, the kinetic
equation (5.6) may be simplified. For then it is permissible to
replace the collision integral on the right-hand side of this
equetion by !

- on/t, (6.1)
where t differe from the mean time between roton colligions (tr)
by a factor which is independent of temperaturc and is of the
order of unity. Because the time interval tr found in Section L4
contains the unknown constant Vo, we will from now simply write

td
indicated above within the quantity Vo'

t,, everywhere instead of tg iﬁdluding the factor of order unity

| Thus the kinetic equation (5,6) becomes

B(P=P) |\ 2% cyp gip mp - -5 (6:2)
KT o

.
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From this we find the deviation of the distrivution func-
tion §n from its equilibrium value

-R . by
Gn = - tgﬁ“Pflil Na 1B . SinB, o1 P 5& . (643)

We will now calculate the momentum flux. In our caee
only the z-component of the momentum will differ from zero,

being directed towards x end equal to

xz

iP_

te - Ju X _a) n et tal 4P
z -‘:‘(—r—/-("(l'ﬂ'lx.).‘ Y gﬂ, ('P 7.{.) 'y S d ¢.r»° (6ul4)

Comparing (6.4) with the cxpression for the corresponding

tengor component end pressure containing the viscosity coef-

" :
The suffix r is used to distinguish the roton part of the
vigeosity coefficient.

we find_thean&gn:ﬁndc*gf ¥ viecosity[éé§§?}éééﬁ§)required:

Tr ) m\* A 2 §
R DY st S ' BnodE
e KT (am by gﬂ f-%) (6.5)

We cerry out the necesséfy integration in (6.5) over the
_elem@nts.of phese volume dP using the aistrivution function n,
given by (5.3). The final result is
Moo (R 1sm) Mo = 7 R 15 A (6.6)

The quantity Jp» equal to the product t,N, is independent

of temperature. And actually, according to (u.11)7We have

b . R " Y
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Je = T Nes l“'/’o""w1 (6.7)

Thus the roton portion of the (vigeosity, coefficient ip
given in terms of constant quantitice and is therefore a con=

stent independent of tomperature.

Egtabli t of equilibrium
a_phopon gag.
s 4&.;\0.1"/
A change in tho number of phonons in ;?p,phaee volume ede-

Ly

mepd. may oocur in the following ways! (a) through scattering of
phonons Yy phonons (Seotion 2); (b) by ebsorption and emigsion of
phonons due to 1nelnstio'ig;agz€fof rotons or phonons with each
other.

In coneidering the role of each of these proocesses in the
phenomena of viscoeity, we firs?t calculate the relaxation times
(or the corresponding free paths) characteriglng the establish-
ment of equilibrium in a phonon gas.

In Seotion 2 it was shown that the effective cross-section
of phonon-phonon scattering rcaches ito maxirum importance for
emnll engles between the momente of the colliding phonons. It
follows from the lawe of conservation of momentum and energy that
such a process of scattering does not lead to a meterial change
in the direction of the momenta of colliding phonons, and there-
fore scattering of phonons by phonons leads mainly to rapld ex-
change of energles between phonons. However, an exact calcu-
lation of the relaxation time characteristic of the establish-
ment of energy equilibrium in a phonon ges cannot be accomplished

for the simple reason that the problem itself cannot be precisely
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formulated., Nevertheless, since the time required for establish-

ment of energy equilidrium in a phonon gas is en extremely impor-
tant characteristic of our system, we will attempt to approach ite
determinetion from two limiting cases.

In the first ocase we assume that by some means there has
veen produced in the phonon gas a change in the number of phonone
possessing smell encrgies (smaller than the average phonon energy)
so that the diotribution funotion for the region of small energies
dous not egual the squilibrium functlon; then we caloulnts the
relexation interval characterizing the establisghment of equilibrium
in such a ges.

In the sccond limiting case we assume that in the phonon gus
there has been a ohange in the number of phonons having large
energies (greater than the evernge energy of the phonons, so that
the distribution function in the rcgion of large energles does
not equgl the equilibrium function. In this case Wwe culculate the
relexation time charscterizing the establishment of egquilibrium in
such & gas. Comparing 1t with the time characterizing the viscous
processes of transfer, we show that the procecs of establishing '
energgiio equilibrium in o phonon gee is more rapid thon the
viscous processes.

We start with the first case; thet is, We examine the scatter=-
ing of smell-energy phonons by phonons. In this case 1t may be
agpumed that the momentum p of the phonon under question is con-
slderably smaller than the momentum py of the phonon with which
this phonon collides. As wap shown in Section 2, such an assump=

tion considerably eimplifies the expression for the averaging-over vf

Declassified in Part - Sanitized Copy Approved for Release 2012736‘/’01 CIA-RDP82-00039R000100030027-9
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angles of %he phonon=-phonon scattering. In the cage in question, :

the angularly normalized effeative crogs=-section of phonon- l

]

phonon scattering is by (2,11):
U
oy, T(wR) g |
f(f’fl)' Y ) | {
(erhae)t Y.
Let us 1ook at the kinetic wquation for phonons ' i

%%,— + VVn = Th) ‘ | |

Where the collision integral J(n) for the process of phonon=phonm

¥ scattering equals
e o) e o) oo ) o
Te)= @} e Jfen a4y g o

| Wé are interested in the relaxation of small-energy phonons,

whose distribution funection equals n, with the given equilibrium

distribution of the remoining phonons. Therefore the digtri-

bution functions n4, n' and nq' in (7.1) will be regarded as in
the

equilibrium, and/deviation of the distribution function n from

the equilibrium value n, will be regarded as small and equal to

Sn. Now utilizing certain properties of equilibrium distri-
bution functions, we transform the expreesién enclosed in paren-

thesis in (7,1)

fossfralfin) wfndfonres)
= S',nsm(n‘-} I)(q‘-ﬂ) —n'h,'/h.ﬂ)?:gn n'nl'(n,-n)/r; |

Substituting the expression obtained in the collision integral,

we have

Th e ) Gl (e o)y
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Thus the relazation time for phonone with small energy ie
determined by the relationship

Tt el eelpn)

In opder to simplify the integration of (7.4), let us sub=
stitute the functions N4, n', end n'y by the Wien function end
make sllowence for the fact that the momenta p and Py satisly
the inequality p<§p1. In this wey the combination of distri-
pution functions entering into expression (7.4) nppeors &si
ny (nq * 1)pe/k?. Using thio and pubstituting in (7.4) express-

jon (2.14) for & (pypq)s Ve nave”

*Integration over dpy With a zero lower limit results in a
certain error, which however is not material, since our
results are of approximate nature.
=

=== =====—.============= _________________

or ofter én elementory integration
| (U"Y’ 2)9 Gl I (]/\T (”P )
¢/ 2 (7.6

—— . stnan 4
by 2
T (Mq.g bay oy brh)
Automatic allowance ip made for the fact that phonons
heving momentum P4 possess high energy, gince in the inte~
gration over dpq & substantial role is played by phonons with
energy of the order of 6 kTe
Let us procede to the cese of relaxation of high energy
phonona. In this casc the agsumption that the phonon momente

obey the relation

(i < f (7.7)
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permits a simplification of the expreseion for the angularly
normalized probability of phonon scattering by a phonon. 8ub=-
stituting py for p in expreesion (2.11), we obtain
N W(u*-‘)d (7.8)
(r6) goep )Y
In quite the same way ag in the case of low-energy phonons,
Wq Tind the rclatlonghip for the relaxation time tor for high-

energy phonong
1t () g T wnes(re) dpo g

Which coincides vith expression (7+4). This agreement is natural,
‘since in deriving equation (7.4) the assumption about the magni-
tude of the energy of relaxing phonons was nowhere employed. Let
us now make use of the assumption about the smallness of the

! momentum taking the phonon distribution functions n, n', and
n1f as small compared to unity, we may simplify the combination
of distribution functions entering into expression (7.9).

"
We have

The aasumption of the smallness of functions n, n', and n1' is
equivalent to the condition p, p', py'< kI/c,
== 42

B T F LT LT ot yyupayuny - : 7
noon n, (n,‘f Q (7.10)
Substituting (7.8) and (7.10) in equation (7.9), we have i
.L__ ) -1 \;4“1) N ( / 4 3 o
, L Coe k) prinlntr) £ (7.14) o
R tr é A Gerb*pyey

Finally,after an elementary integration, we find

Lo ) Ty fs)e
t, (4;; L/’) cy (arh)3

; The fact that the momentum py is small is automatically

(7.12)
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satisfied in expression (7.11), because a substential role is
played in the intcgral contained therc by energies of the order
of 2KT. Using the numerical values of the parametors entering
into formulae (7.6) and (7.12), we caleulate the coefficients in
these expressions. The result obtained is the relaxation time of

low-energy phonons!

) 77
Uty 2 210 Thx (7.13)
and for phonons with high cnoergy!
Wty 2 o° T x? (7.1)

Here the quantity x 1o rclated to the phonon encrgy by €= xkT,

In determining the rolaxation time of phonons poseessing an
arbitrary energy, on interpolation formula cun be selectud which
would go over into equations (7.13) und (7.14) obtained in the
two limiting cases. The following formula sutisfies this conditiont

'/t,p" losT7x(z+a)3 (7.15)

Scattoring of phonons by phonons does not cause o gubstantiaol
chenge in the direction of the momenta of the scattered phonons,
but on the other hond, as already noted, this process provides for
the establishment of equilibrium of energy in a phonon gus. The
reciprocal of the calculated relaxation time @/t¢) characterizes

the speed with which their equilibrium is ¢ptoblished in a phonon

=2:¥-1

N

e. Lo _the scattering
by _rotons and of phonons by phononsg.

The effective crosgs-section of various scattering processes

enter into the collision integral additively, and therefore we

Declassified in Part - Sanitized Copy Approved for Release 2012/06/01 : CIA-RDP82-00039R000100030027-9
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rewpite the kinetic equation for phonong (5:8) ae 1

N (“u"‘”‘) e .i% 5B Sl Cal F J(n)—r Q_&'(MT(n]e.n

where JI(n) 41p the collision integral for the process of scuttering
of phonons by rotons, d. @)15 the collision integral for the procese
of scattering of phonons by phonons, and finally, Jnlﬁo ig the
collision integral aosociated with the procese of emall engle
scattering of phonons by one other, os discussed in Bection 7.

The kinetic equation (841) a8 written determines the digtri-
vution function for phonone of orbitrary energy moving in a given
airection. Let us make an assumption, the corpectness of which
will e convincingly shown below, Let us assume that the process
of ecstoblishing energy equilbrium in a phonon gos tokes plece
noticeably faster thon the geattering of phonons by rotons and of
phonons by phonons. Then the phonons moving in a given direction
will be distributed in energy in just the same way @s they would
in complete equilibrium in the abeence of o gradient of the macro-
scoplic velocity. According to Section 7, establishment of energy
equilibrium in a phonon g&s is accomplished by the proceaabof
scattering of phonons by phonons at cmall angles. In such a pro-
cess, the directione of motion of colliding phonons and scattered
phonons coinclde. At each scattering process, the energy of the
colliding phanons is conserved. Inosmuch as the phonons themselves
do not change their direction of motion, it may therefore be as-
serted that the total energy of the phonons moving in a given
direction remains unchanged. -

let us integrate the left and right sides of equation (841)
over the totel range of phonon energles. As a result of such an
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operation, the integral over all energles derived from Jm (n) '
turne oub to ve ida'ﬂtically z6er0, pacause tne total enersy of the
phononsé, moving in @ given airection during amall-ungla phonen
soattering: is congerved: Thue efter the 1ntagration md.icm;ed,
gquation (8.1) ‘necomaa;

1%'1‘?‘%: ek S S g m[nn-ﬂ)ioﬂ"ﬁf - £° STJ(") " Trj(n)g‘o,qo,(a.z)

(where .£° op)e

d

N8
-

A—ohargT Jne total number of phonone efn 4eke—preoce 88 O
result of emission and apsorpbion of phonons:. The eimplest of
such processes ie the triple-phonon one in which one phonon turno
into two, ©Or the reverse; thie i8 ﬁorbiddon oonise of the im-
poaeibility of simultoneous fulfillmen‘c of two congervotion 18W8)
tnose of energy ond momentum. The prohimtion 1ndlcated does not
apply vO the £4ve=-phonon procesty 1.e0 for the prgcese of obeorp-
tion Or emission of & phonon when two phonone collide with enoh

othere The calculation of the probe‘nility of such & process is

t‘neoreticany poaeible put involves extremely curmber8ome calecu- i
1etions. It ie gufficient to mention that the number of inter- ‘
mediate states for the transfer of two phonons juto three amountg 1
to over 50. Fortunntely, it is poaeible to avoid these €610

1ations, since the releaxation time correepondmg tol the five-

phonon process con e calculntad girectly from experimental values

for the apgorption coefficient of sound in helium IT.
rhese velues shoV that at temperaturee sbove 0.9%K the fives

phonon process takes place more plowly thon gne processes of
geattering chapacterizing viscositys At lower temperaturess the
pictur'e i the Oppoeite _ the procesd of emission (or obaorption)

of the third phonon during collision of two phonons pecomes more
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rapid then the processes of soattering characterizing viscosity.
This oiroumstance is likewise confirmed by cstimates of the
probebility of the five-phonon process.

We 9stimated the probobility of emission or absorption of

"
phonons during collisions of rotons among themselves .

===cz==as====z==
These processes turn out to de slower thun the processes of scotter-
ing characterizing viscosity for all tempcratures below the lambda-
point, Lut us first cxamine the region above 0.9°K. From the
above it follows that for the times characterizing viscous effoecte
at these temperatures, the total number of phonons in motion in

a given direction may be materially altercd.

Nevertheless, “he—ehsnge—imr the total number of phonons in
motion in a given direction does not 4&@2:§iéee during scattering
of phonons by phonons qg‘small angles, For this reason, in inte~
grating the left andwiigﬁg'ﬁigea of equation (8.1) for all phonons
moving in a given diroctionvﬁha corresponding integral from Jlll<n)

vecomes ldentically zero. As a result we have
00
c : P 3 1
Py QM s w8 n ot J = 3 J (843)
- S & Iw ¢BU o{ho )o" F °<‘ Tlﬁ\) +J.H(")f “P
From what has been sald above about the relative slowness

of the processes -0f cmigsion and absorption of phonons, it follows
from equation (8.3) thet the change in the total number of phonons

moving in a given direction is entirely dependent on ths processes
of scattering characterizing viscosity.

In accordance with our assumption for the times characteriz-

the viscous process, the energegg; equilibrium for phonons moving

P
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in a given direction is entirely dependent on the procesees of
soattering characterizing vigoosity.

In accordance With our agsumption for the times charaocter=
izing the viscous process, the energs%%p equilibrium for phonons
moving in a given direction is not destroyed. Thus phonons
moving in o given direotion have some temperature T', in general
not cqual to the average phonon gns temperature, and are charac-
terized by en equilibrium distribution funotion appropriate to
this temperature.

Neverthelgss,lbeoauee the number of phonons moy change
during the intervals characterizing viscosity, the distribution
function for rotons moving in a given direction will not be
simply the Planck function, dut will contnin some function o
similar to a chemicul potcntiui;/;nd dependent on the direction
of the phonons' motion, Accordingly, at the temperatures under
discussion (ebove O.9°K) phonons moving in a given direction are

described by the distribution function !

+(pelkT) -\ i

n = [e. -1 (844) i

where &' end T' are functions of the direction of the momentum of

the phonon in question in the system of - coordinates selected. §
The function «' may be of either sign, ond for this reason

dor
the expression ¢! + (pe/kZ') will become zero é& certain phonon

cnergles. However, @ the magnltude o!, being proportional to the
macroscopioc velocity gradient, is extremely minuteﬂ%FHis poseibili-~
ty could be realized only for phonons with extremely minute energy
£ &LXkTe But the number of such phonons ie so minute that they play
no rble at all in processes of scattering chaeracteristic of vise-

cosity; for thie reagon the circumstonce mentioned hes no influence
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on further calculations.

\

Let the average temperatures of the phonon gas be ' T; then

the deviation of the distribution function n from the equilibrium

value n, is, in accordunce with (8.4) and (570
e ST (845)
Sn s n-n, =—nn(n°+ '){fl—% ;«g

where ST is the deviation in temperature of phonons moving in
8 given direotion, from the average temperature T (fp = 7' = 1),

The deviation Lyof the dictribution function from its
equilibrium value in the temperature region under conslderation
depends on the two variables o' ond §T; to determine them
we use equations (8.2) and (8.3).v ‘

We will now consider the tcmperature region below 0.9°K. In
this cese the processes of emission and absorption of phonone
take place fnster than the processcs of seattering characteristio
of viscoslity. Because of the noticeable difference in the laws
of temperature variation for the processes mentioned, the once
comperatively slow Jé%ceéees become comparatively repid on trans-
ition through & small interval of tcmperatures, so that by 0.8%
the processes of emission and absorption of phonons may already
be considered rapid. Thus in the region of temperatures below
0.8°K the number of phonons moving in a given direction will be
deseribed merely by Planck's function, dependent only on the
temperature T' of thi‘iﬁfpons @gxihg in that direction:

n= f'ef'} - IJ (846)
In this case we éitain the following expression for the deviation

of the distribution function of phonons from the equilibrium
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Sn an=1no = ho("°+ ')% %—l : (847) 1

We will uge equation (8.2) to determine $n in this region

value

of temperatures. Equation (8.3) has no significance here beoause
the motion of the total number of phonons moving in a given dir-
eotion is not determined by viscous processes but by the more
rapld processes of emission and abgsorption of the phononss

Let us oaleulate the phonon portion of the viscosity co-
efficlient for the temperature reglon above 0.9°K. To do this
gquations (8.2) nnd (8,3) mupt be solved. Let us begin by o
troanoformation of the colligion integral J‘(n) contained on the
right-hand side of (8.2) and (B.3). The collision integrul

Jr(n) for E?e scattering process of a p?onon by rotons equals
OF {nk) gc@n’((‘)\y){[\ln(w'*l)(n\i-l)—N (V4 n)? AT (8.8)
Here N ig the distribution function of rotons, n is the distri-
bution function of phonons, P is the roton momentum ond p is the
phonon momentum. The functione for colliding phonons and rotons
are written without a prime oign and the correcsponding functions
for‘scattered particles are indicated with a prime. The effec-
tive diffe:ential crops-section d¢ of the scattering of phonons

by rotons & en angle |/ equals, by (3.20)
YONY/ . N
. él,f(e:" W) B ,/ fpﬂf _«‘> {-;—(HCAW)“"'W + ,DIS %)(I‘*‘?M‘W'fg.m“‘o

Uﬂ")\\f’oc

+ lL(.?o.)(l + :m‘Lv)+H1? o)
1S me S\ w

(40 is an element of solid angle).

Where there 1s o macroscopilc velocity gradient u, the - "
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aigtribution of rotons and phonons ig characterized by non=-equi-

1ibrium functions. However, it may easily be shown that due t0
the rapldity of the procese of poattering of rotons by rotons, the
deviation of their distribution functions from the equilibrium
values will be coneiderably lees than tho corresponding deviations
for phonons. #or thic reason protons Will be described by their
equilibrium distribution functions in the collisions integral Jt(n).
For phonahs, however, we will have to pubstitute non=equilibrium
functions 0@ in (Ded)s  Alter guch oubptitution and integrution
over the alumanta“bf phago volumc:dg)of the colliding rotons, the
collisions integral J. (n) appears oo follows !
J, n) = —N,gcdo'(y, y) (,g.\—ﬁ.\‘)\) (8.9)

where Nr represente the number of rotons per unit volume, and the
deviation Sn ig determined by the exﬁreaﬂionu in the reletion (8.5).!

The left side of equation (8.2) and (8,3) contains a funotion |
?f the angles of the form P21(cose) cos(p )where Py (cos® ) is
the assoclated funct135~qz_gggendre. Therefore equations (842)
and (8.3) should be solved in such o way that the expressions for y
the deviation gn entoring into the right eldes of expresslons
(8.2) end (8.3) should be proporsional to similar functions of
the ongles. In the future, however, in order to gimplify trans-
formations of the collision integrals, we will use in the inter-
mediate calculations the Legendre functions of zero order in
P, (cos 9) , ingtead of the function P, (cos B ) cos ¢ .

Such o substitution is poseible because the spherical syn-
metry of the scattering mokes the colliplons integral insensitive
to it. Naturally in the final results we will substitute instead
of the function P2 (cos ® ) the function P21 (cos ®) cos¢ obtained
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4n the eystem of coordinates gelected . :
Thus We Write the functions o' and §7/T dotermining the

aeviation of the Aistrivution for phonone moving in A given

T(: Ngm(n.H Jb'(ﬁ’ <__¢}'_ﬂ))--.?(w)—;>‘(qe«§] (8.41)

Lot us now use the following result of chonaru'e theorem on

direction from the equlllbrium value in the form
d = oL'P;(as'e) ) = R ( “M> (8410)
‘n where & and f arc coefficlunts inacpend@nt of the angles. with
the aid of (8.%) ~nd (8.10) the collision intugrol J¢ (n) becomes: %
i
|

the adadition of these functions. Let thers be two directions in
” - gpace fixed Mf thuir polor angles Q end Y and aximuthe 4) and
' (1)'; then the Lurundre function of zero order (depending on the
cosine of englo 9' petween theso directions) satisfice the fol= i
lowing 1n‘oegm1 rolationship! con B (i
P, (e 0')dg = 3m b (@) P () L (8ut2)
Expreeeion (8.11) contains an integration over the solid

i anglce of the scattered phonons, and thorcfore applying relation-

onip (8.12) we rewrite the colligion integral (8.11) a8
. P, (o) N.(céa(e v ?XCGU)](“‘ ﬂk.—r(s) no(1o +1)

From this, after integration over the elomen‘os%f solid angle (d())

AR TR

of the scattercd phononsg, We obtain.
T (n) * ~P L.A%)nu(noh o< - ﬁ) (L} (8413)
where we intro&uca, the symbol )
Loe N 17’»-‘”’)] P P22 » A >+ﬂ (84 14)
7 ek Mo m -
The quentity 7 has the dimension of ‘time.

T

-

o
[

i
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Next we caloulate the 1ntegra2§ on the right-hand sides of
o0
A 3
(8.2) ana (843) , L.Ti('\)q* Jd" and L 71'(") g df . Tho ro=
quired integration is oarried out very simply by toaking as the
distribution function n, the equilibrium function of Ploncke Thus

we find
Sj;—x(n)o,‘ga, : ?,(ma)(c!u- 7.‘;)(1«7/:)3 1. (8.15)
S:%(“)io’“ o Do) (7=l e} £ (8.16)

We now carry out a transformation of the collinion integral
JH analagous to that given above, taking into consideration the

process of scattering of phonons by phonone. The integral con-
cerned is written aes follows:
T, 0): -&m)"‘ﬂ(cd«(o}@-ﬁ'w@{nn.(w‘+',)(w-‘+0 (8417)
0
= ')+ K40,
where the differentiel effective cross-gection ds(g,g1,p'.g'1) is
determined by the relation (249).

Let ue substitute in (8,17) the phonon distribution functions
in the form of the sums of the equilibrium functions and emell
edditions such as those of (8.5). Evaluation of (8410) then
gives )

o 2m) el b ol i)
gpl(asa') + Piaay)” P s0) —"3(‘49‘.)}4@

' ..@wx)"ﬁ(cjw)“C“(ﬁ’g@)ﬁ!"') halya (M #1)(Ma ) (&19)
CpPy (@)~ @ #(wo, ) — ¢ Blws') = ‘.f{ﬂ(ma,')gdﬁ

Here p and D, are the momenta of the colliding phonons, p' and
2'1 ere the momenta of scattered phonons, H is the engle formed

by the path of the phonon with the corresponding index and that
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p— ]

of the phonon with the given aipection. Wo introduce Angles
Wy | end |/ 4 betwoen the dircctions of the momenta P4y p' nnd
p'y and the momentum p , and npply the result (8412) of the

addition theorem for Legenire functions. Ap & rosult (8.18) be-

comes:

g P (o)) [Jefe e e fhg) roma(nd #)(m ) X

' TRENCIORIAY —Rlw )30

. ()5 rHY e ooy o) ema (n ) X
w*@R@M)-Fﬁ@WQ-mWAhW)?%n (8.19)

! Let us show that the second integrnl in (8,19) cpponrs even with-

Vid !

out allowance for geattering, Moking the obvious gubstitution for
P2(005 V), the pracketed expression in the intcgrnl may be written

ag follows!

. }E (\f’ SW‘V"‘" GI‘S;"}M"E)SW’LV)\) (8.20)

We deduct from the equation for congervation of energy p+p1-p'-P'1=0»
the projection of the equation of momentun conservation in the dir-
ection of she momentum P

g ooy s - @ =0
Our resu.t is

ﬁ“»@%)-@%h%WD'@W'%ﬁJ‘O (8+21)

o,M
Multiplying the expression obtained by jr\arlding the result o

SEAL P oo

expression (8420), we obtain
‘ ‘i ((f\(\" 94 W;)‘ - UJ'(‘- C”W')i- oﬁl‘( )—MW")IB (8'22)

-4 ip eagy to see from equation (8421) that the expreseioﬁ
(8.22) 18 proportional t0 (4 - cos \J/1)2 when the angles between
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the momenta of selliding phonone are omall, But in accerdance with

(2.7) the differentinl effective cross-sectien for the soatiering
process in Questlon divergee in this case, if ascattering varying
’ ;#ﬁ’(1-cca qqfﬁ is disregarded, Thue tho socond integral in (8.19)

AN

remaine finite for all angles between theo momente of colliding
phononse.
If scattering ie neglected the flrot integral in this goamo
i expression (8.19) diveréeu logrrithmically fer smull angles be-
7z twoen the momenta of colliding phonona. 0 . |
The calculation of the integrals Y;J“ (n)pzdp and E;}I(n)ipzdp,'
which we will not reproduce here dus to lts extreme unwieldiness,
shows that at temperatures above O.9°K these integrals mey be ne-
; glected in comparison with the corrusponding integrals on the
right sides of equations (8.2) and (8.3) involving JI(n). Equality
. of the corresponding integrals involving JI(ﬁ) and JH (n)

oceurs enly at O.?OK. Therefore when considering the phenomenon
|

of viscosity in the temperature region dbove O.9°K, we will meke |
|

allowance on the right hand sides of the equations only for effects

due to scattering of phonone by rotons, these being described by
the collision 1ntegra1r?r(n).

Ag shown obove, é% lower temperature;7‘:£e parameter < may
ve assumed equal to zero., Equation (8.2) is used to determins the
only unknown parameter g.

Aecording to (8.19), in this case integral J_ (n) simply B

| I

equals
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) ~f%2) fkébwk)'J“cdo'(@ g f) etie () mit)
. ’ X,/[f—bf,ﬁ(&)“f) -'(f" p.(%WQ—oﬂ"?I@:W,')? Af' (8.23)

The caloulation of the integrel GU (n)zpadp, appearing on the
' 0
right-hand side of equation (842), which we will not d,souss here,

gives the following result: |
2 : ] T) k'r>3 L
fx_{(n)s@ dp = =Plese) fTICED % (8.24)
where I? ig a magnitude with the dimension of time being de-
termined by the relationship :t. ) 1
b o 3 03 (u+2) (k_.T )“’ (8.25)
T ——eyy . .
? SRR
In view of the complete convergence of the integral (8.23), ex-
pression (8.25) naturally does not contain the scattering
parameter.
The integrele conteined on the left~hand sides)if the equa=~
tions (8.2) and (8.3) are calculated by slementary methods, and

%
I

.-
their values are :

S“ nﬂ(n,-m) ;0,34}& L k"l';kC_I? v .~(e.26)

15

gj"°("°+') e 2 % @:‘y (8.27)

We now substitute in equation (8.2) and (8+3) the values

for 8ll the integrale involved. Eliminating immaterial factors
end dropping angular functions, we obtain the following pair of :
squations for the determination of the parameters s end g valid £

in the temperature region above 0.9°K ,
. bt i) v 3 = [(w-7) )_'
e

b |
For temperatures below O.9°K, by epplying the same method to I
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equation (8.2) we obtain the equation for the determination of

perameter @:

bt oy _(g(f‘;' + .7__;:> C (8429)

9, Length £

We will now ocalculate thelength of the mean free path charac-

terizing viscosity. The parameters & and ﬁ', which determine the
deviation of the distribution function from its equilibrium value,
are characterized to a congiderable extent by their oquilibrium
values. With simulteneous change in the volues of these parameters,
the vigcosity coefficient changes correspondingly. We will con-
sider o and g as functions of the time t. Then in complete analogy

to equation (8.28) we may obtain two equations

i o

1)
3¢ dx _ w‘*_‘%ﬁ- -(714-8’)-' (9
5 aF 757 b 'A g
determining the law governing ehenge -h these parameters in the

temperature region above O.9°K. We seek 8 solution of this system
of linear differential equations wirtek-wild=be in a form propor-
tional to e't/e¢ «  The quantity Q¢ is the natural choice for
the characteristic time determining viscosity. Multiplying

by the phonon velocity o gives'us the corresponding phonon mean
free path X¢. Determining berom the set (9.1) we obtain a quad-
ratic characteristic equation, with roots equal to

8y % 176 mu;/, 37/6! (9.2)

In comparing the eppearance of viscosity under macroscopic
examination, the largest absolute magnitude of these roots must

be chosen. Therefore, taking the largest values E@ obtained for
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the free path of phonons, &nd applying (9.2) and (8+14), we ob=

tain the following expression:

To determine the.charncteristic time ), in tho tomperaturo

region helow 0.9°K, we obtoin in analagy with (9.1) the lineur
differential equation

=l
w48 - o fe £
A = ¥ 7 (5.l4)
In this casoc >\¢ is determined by thu cxpreseion:

o fel L aNs L BT RGP 433 (R Ve A 4 A
M (7 * fq:)l»ﬂ""c nﬂ-icil-g—ﬁ?;' " ?-'3—5’%‘7)"' 75 "5\)+P(
131 (ur) (T
@iy e e K E ()
Substituting in the expressions (9+3) and (9.5) the numeri-
cal values of all the parameters, we finally obtain
I/>¢‘- 34, jobrIl 9_“"/“7 . T >k 89.6)
g e 11 10F T p =2/ 51T {r Lo
Figure 1 is a grophic representation of' the dependence of
]

1/ )\(P on temperature*

In all gnown measurements of ke vipcopltyscoefficlent of¥
helium II% the size of the system has been considerably
greater then the length of the phonon frce path., However
Andronikashvili has pointed out in g{@eriments on heat con-
duection in helium II in nerrow slite,\\he mean free path ot
temperature 1.30K is already equal to'the dimensions of the
slits. This circumstance considerably complicates the
eppearance of heat conduction in helium II in narrow
apertures.

The points along the curve of 1/)\(} were obtained by interpolation
for temperatures between 0.8 and 1,0°%.

Let us now epply the results of the present paragraph and
confirm the validity of the assumptior;a('/‘v%'made gbout the veloe-

ity of <ébe- establishment of energ&e equilibrium. The expression
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(7,15) determines the time of establishment of energugén equi-
1ibrium for phonons, t? ., From the assumption made, it follows
that the process of egtablishment of energo;x; equilidbrium occurs
fagter thon the viscous processes, B0 that the time t¢ for the
phenons, which plays & gubatantinl ro;e in visoosity, should be
less than the smallest of the times Ebdotermlning the relation=
ghip (9.2). It oon easily be seen fromw§9.1) that the phonon
component of the viscoeity!coefficientrdepende fundamentolly on
phonons with an energy of the order 7-8 kT. Comparing the times
t? and 9¢ for phonons possessing such energy, we oan confirm
that ot sll temperatures below 1.3-1.u°K the assumption made is
fulfilled.

In examining the question of the ve;ocity of establishment
of energoé;e equilibrium %%Lmuat,a@ képékin mind that the basic
perameters, and above all the scattering parameter }/'determining
magnitude t@ , arc known only extremely epproximately. For this
reason the most convineing verification of the assumption made
can only be by experiment. The agreement between 446 computed
and measured values for the vigcogity coefficient obtained through
the comparisons carried out below convinces us of the correctness
of the eassumption mede. We are inclined to attribute the mutual
approach of the ggtimated times t@ and Bv at temperatures above
1,4% to the approximate nature of the calculations made. This
ig indirectly confirmed by an anelysis of the data on pound ob=
gorption in helium II. It should be kept in mind that at tempera-
tures &bove 1.u°K, the role of the pbonon component of the vis~
cosity coefficient becomes relatively slight in comporison to

the roton component, end for this reason this question 18 of no
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consequence for the temperature region above 1.M°K.

Let us now turn to the caloulation of the phonon component
of the Viaooaitimcoefficia"ﬁ% First we examine the temperature
region above 0.9%%, Let us solve the system (8+28) with respect
to of and g, ond substitute the values obtained in expreseion
(845) for the deviation §n of the distribution funotion from its |

eQuilibrium value. Then wo obtain

9
} fne =N (no+1) ase.sme. @3 E’-!-('SM - 34 %-)-3;’ (10.1)
! In doing this we have rep;uced the function Pz(cos B ) by :
P21(coe 9) cos @ . We proceed in a similar way for the tempera- ;
f'x ture region belcw O.9°K./ From squation (8.19) we find the magni- {
' tude of the parameter é? and further, using (8.,7) and (8.10), we
1) find $ n: o . ‘
\ i ! L, Ty e N, . !
LD Snf —hoinet!) 5o Sind e F{'gqu;;f:){} Q:\; (10.2) ]
The z-component of momentum, differing from zero in our case i
and directed aleng x, equals E
") O * -(Qﬂk)'zgq’C»Sn‘QS&SV'-‘-O.CA@-‘fldo‘J do. (10.3) !

Galeulating in turn the value @, with §n in the forms (10.1)
and (10.2)7 and comparing the pesult with the expression for the
eppropriate components of the pressure tensor O, = /b@m/ax, we

find qftér simple ?eduot;ons the phonon component of the wioeoatby-
(‘»C»(/ \eatons ,»X Al ot L”C«vl '
o . U

L—
~
N
\\\
_‘@%‘Wﬁ,@a&z;- o i
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“‘cuaﬂtﬂﬁm 3 () o :-’
p = 0157 kﬁrmw— - [T:B MR (7'>"" 75'(:':) ”_} (r>1%

erT
q@ : (%yo“fw‘y{“é"ﬁ‘kT)’; Pn -L\/k-r [) ) ” w. + /--l>+&7
“ (
: 3.,_,_'9_5'_(w=%> (e ) s fr < oic)
' (10.4)

Substituting the numerical values of all the perameters in
(10.4), we obtain as the final reoult
. _‘. T ~yy d
fly = %7 0T fANT (1)

‘/,’P 7-6.)0'"’(T *Q”A/ 4 10 'f“) (‘MMWO )

d{\'
Thue the phonon component of the viscoslity coefficientAin—

_ creases as temperature falls. At temperatures above 0.9 K, it

increases in accordance with the law e /kTT'% . For temperatures

) below 0.7 K, where only the effect of scattering of phonons by

phonons ig significent, this law is reploced by the law T 5 A
more complex law, determined by formula (10.5) governs the inter-

mediate area,

. Tempersture dependence of the vigcosity
coefficien o? helium II.

In Section 6 we calculated the roton component of the vis-

cobity coefficient /). , which turned out to be independent of
temperature. In Section 10 we set forth formuiase for the phonon
component of the vigeocity coefficient, disclosing a gharp rise
of % with temperature drop. The actual viscosity) coefficlent Pfﬁ

of helium II is equal to the sum of the roton and phonon componente
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Since the coefficient for helium is the sum of a part that is oon-
stant and one that increases with fall in temperature, the vis-
cosity coefficient ought to riee gherply with fall in temperature.
No mention has previocusly been made of this interesting faot.
According to (6.6) and (10.4) the actual coefficient of vie-

cosity of helium II is 31Ven as follow !

1t ol e a) e e ) ]

TISp T 35
(T >1°k)
(11 1)

1 B (it 3 2
+ 1|3’(u*1) g/_T)s\S' {r(ok"k)

Since the roton component of the viscosity coefficient cannot
ve accurately calculated, we determine this quantity by experiment.
For this purpose we employ Androni%gshvili s( ) deta on measure-
ments of the viscosity coefficienﬁA@own to a temperature of 1 359K.
Subtracting the phonon component caelculated from formula (10.5)
from the experimental values for the viscosity coefficlent, we ob=-
tain for the temperature interval between 1,35° and 1,9% an el-
most constont magnitude of 1. 10™5 viscosity units of measurement.
This we identify with the roton component of the viscositﬂ co=

efficientK Thus we hava T
. -5 .
qr = "Potj‘r 2)3/4 = |. |0 :F'm“ FO\SG (11‘2)

The values for the constants 7, and V, may be obtained
from the resulting value of qr . These constants are roughly
equal to

- -3 =38 g
T 500 secom ) Vo 05 N0 7 g

|
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Using now the numerionl values of /]r and the exproseion
(10.5) determining the numerical value of n¢ , Wo write for the
finel expression of the vigcoaity coeffiodlent

)T -

n. 0¥ )+ 7 et T e poise (T «) (11.3)
- . -1

1 10° 7‘s‘.|a’(T*ﬂ=">‘W-+¢,-g, m"‘rs) (1- <o<e’1<)

The formulae of (11.3) dctermine the velues of q for both
temperature regions - i.es above and below 0.9°K.

Neither one of these two formuloe is valid in the noighbour-
hood of 0.9°K. This ie explained by the fact that,ut this tempera-
ture, the times characterizing tho processes of emission mnd ab-
sorption of phonone become equal to the times charucterizing the
viscous processes of scattering, It might have been possible to
take this circumstance into mccount in equation (8.3). Howsver,
since this effect is found to be significant only in a small inter-
val of temperature of the order of 0.2°K in the neighbourhood of
O.9°K, we will not give it special consideration.

For. purposes of calculation, we use the first expressions
of (11.3) in the temperature regions above 19K, and the seocond
for temperatures, below 0.8%., We find the ¥elues—for—tho—viseesthy

of via ¢ o uty

coefficienﬁAin the intermedinte area by interpolation between'%ﬁébgy

calculated values.

In Figure 1 o comparison is made between the valuee of the
vigcosity coeffecient obtained from (11.3) and those mensured
experimentally by Andronikashvili(1). The experimental values for
the viscosity coefficlent disclose some rise with temé?ature in

a small reglon near the lambda-point. However, it should be
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remembered that the results that we obtained must not be extended
to the temperaturs region in the neighbourhood of the lambda=
point, In all our discussions it has been apsumed that the phonon
and roton gases Are practicnlly jdeal, BSince this agsumption
ig not velid in the region near the lambda-point, our reggulte are
naturally not applicable in this region.

In conclusion, it must be noted thot p11 the resulte obtained
in the present work uro of extremely limited aceuracy owing to the
extraordinarily crude state of our knowledge of such thooretical
peramcters @8 BC/Bf» B"’-’,D/"1 N L3 /}f" and 37%/?/“ ., Of
course this remark does not apply to the values obtalned for
the temperature dependence, which has been determined aufi‘iciqntly
accurately.

: In his earlicr works, Tiszo obtained the low "]NT5 for the
viscoslty coefficlent from entirely incorrect considerations. . In
his last work Tisza(Z) rejected this result and obtained another
temperature voariotion Ul 4 ’1‘%r using en arbitrary gystem of
pcstulates. )

Turning to Andronik(\shvni’s(” lateset experiment, and in the
same connection to the regults of the present work, one may be
satisfied that in reality there is nothing resembling ‘;ho law

il ”T% for helium II. In spite of Tigza's assertioné'to' the con=

trary, helium 1l possesses a(yispoéity:‘ﬂeifiieﬁt T" with a de~=

rivative dl|/ar negative for nll temperatures except for & small
region near the lembda-point. In this respect 1t does not differ

from ordinery fluids.
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(Reoelvyl by thoe Editor April 8th, 1949,) ¢
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(o are Andronikashvili's values of 7 )
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